
Linux: Vom Hobbyprojekt zur globalen
Infrastruktur

Hood Informatik (YouTube)

31.01.2026

1

https://www.youtube.com/watch?v=WYGFov75Pvw

Inhaltsverzeichnis
1 Einleitung 3

2 Am Anfang: Unix – elegant, aber geschlossen 3

3 MINIX und seine Grenzen 3

4 Linus Torvalds und der Kernel 4

5 Der entscheidende Wendepunkt: GNU GPL 4

6 GNU und das fehlende Userland 5

7 Wachsende Komplexität 5

8 Das Problem der Koordination 5

9 Die Lösung: Git 5

10 GitHub und öffentliche Zugänglichkeit 6

11 Technische Einordnung 6

12 Linux heute: Eine globale Infrastruktur 6

Abbildungsverzeichnis
1 ATT Unix PC Model 7300 Vintage 1985 3
2 Kernel Layout (Author: Bobbo) 4

2

1 Einleitung
Wenn wir die Entstehungsgeschichte von Linux verstehen wollen, dann reicht es
nicht nur bei der Idee stehen zu bleiben. Wir müssen uns ansehen, wie Linux
technisch gewachsen ist, warum dieses Wachstum überhaupt möglich war und
weshalb man heute Jahrzehnte später jede einzelne Entscheidung fast lückenlos
zurückverfolgen kann. Genau das macht Linux einzigartig.

2 Am Anfang: Unix – elegant, aber geschlossen
In einer Welt, in der Betriebssysteme zwar leistungsfähig, aber abgeschottet
sind, dominiert Unix Universitäten und Unternehmen. Unix ist eine Familie
von Mehrbenutzerbetriebssystemen, deren Design auf klaren Schnittstellen und
klein kombinierbaren Programmen basiert. Technisch ist Unix elegant, aber der
Quellcode ist proprietär. Wer lernen will, wie ein Betriebssystem wirklich funk-
tioniert, stößt schnell an eine Wand. Proprietär ist quasi das Gegenteil von Open
Source bzw. Quelloffen. Man kann den Code also weder lesen noch modifizieren.

Abbildung 1: ATT Unix PC Model 7300 Vintage 1985

3 MINIX und seine Grenzen
Als Reaktion darauf entsteht Minix, ein bewusst einfach gehaltenes Unix-ähnliches
System für den Unterricht. Minix erlaubt es, Betriebssystem-Konzepte zu stu-
dieren, aber nicht, sie kompromisslos weiterzuentwickeln. Änderungen sind ein-

3

geschränkt. Produktiver Einsatz ist nicht vorgesehen. Für die meisten Studie-
renden ist das ausreichend – für Linus Torvalds nicht.

4 Linus Torvalds und der Kernel
1991 beginnt Linus Torvalds (* 1969), Informatikstudent in Helsinki, einen eige-
nen Kernel zu schreiben. Ein Kernel ist der zentrale Teil eines Betriebssystems,
der direkt auf der Hardware läuft, Prozesse plant, Speicher verwaltet und Sys-
temaufrufe bereitstellt, über die Programme mit dem System interagieren. Li-
nus’ Ziel ist nicht, ein vollständiges Betriebssystem zu bauen, sondern die volle
Kontrolle über genau diesen Kern zu haben. Dementsprechend sind die ersten
Versionen von Linux klein, roh und klar auf eine Architektur zugeschnitten.
Technisch handelt es sich um einen monolithischen Kernel, also einen Kernel,
bei dem zentrale Funktionen wie Speicherverwaltung, Dateisysteme und Treiber
im selben Adressraum laufen. Das erhöht zwar die Komplexität, ermöglicht aber
hohe Performance und direkte Kommunikation zwischen Subsystemen.

Abbildung 2: Kernel Layout (Author: Bobbo)

5 Der entscheidende Wendepunkt: GNU GPL
Schon früh zeigt sich: Linux ist kein Lehrprojekt, sondern ein System, das be-
nutzt werden will. Der entscheidende Wendepunkt kommt mit der Veröffent-
lichung des Codes unter der GNU GPL. Diese Lizenz erlaubt es jedem, den

4

Code zu nutzen, zu verändern und weiterzugeben, verlangt aber, dass alle Än-
derungen ebenfalls offen bleiben. Technisch bedeutet das: Jede Verbesserung
wird Teil eines gemeinsamen Wissenspeichers. Linux kann wachsen, ohne sich
zu schließen.

6 GNU und das fehlende Userland
GNU hatte über Jahre hinweg Werkzeuge wie Compiler, Shells und Systempro-
gramme entwickelt – also das sogenannte Userland, die Programme, mit denen
Nutzer direkt arbeiten. Was fehlte, war ein stabiler Kernel. Linux schloss die-
se Lücke. Aus zwei unabhängigen Projekten entsteht also ein funktionierendes
Gesamtsystem, das oft präzise als GNU/Linux bezeichnet wird.

7 Wachsende Komplexität
Mit steigender Anzahl an Entwicklern wächst auch die technische Komplexität.
Der Kernel bekommt klar strukturierte Subsysteme: Ein Scheduler, der ent-
scheidet, welcher Prozess wann Rechenzeit bekommt; eine Speicherverwaltung,
die virtuellen Speicher abstrahiert; ein Netzwerk-Subsystem, das Protokolle wie
TCP/IP implementiert. Jeder dieser Bereiche ist hochspezialisiert, aber über
klar definierte Schnittstellen miteinander verbunden.

8 Das Problem der Koordination
Doch genau dieses Wachstum bringt ein neues Problem mit sich: Wie koor-
diniert man tausende Änderungen von Entwicklern auf der ganzen Welt? An-
fangs nutzt die Linux-Community klassische Versionsverwaltungssysteme, doch
sie stoßen an ihre Grenzen. Sie sind zu langsam, nicht verteilt genug und nicht
dafür gemacht, massive parallele Entwicklung zu bewältigen.

9 Die Lösung: Git
2005 reagiert Linus Torvalds erneut mit demselben Muster wie schon 1991: Er
baut selbst, was er braucht. Er entwickelt Git. Git ist ein verteiltes Versionsver-
waltungssystem, bei dem jeder Entwickler eine vollständige Kopie der gesamten
Projektgeschichte besitzt. Technisch basiert Git auf kryptografischen Hashes,
wodurch jede Änderung eindeutig identifizierbar und manipulationssicher wird.
Git verändert nicht nur die Linux-Entwicklung, sondern die gesamte Software-
Welt. Es erlaubt schnelle Branches, parallele Entwicklung und eine transparente
Historie. Jede einzelne Änderung am Linux-Kernel bekommt eine eindeutige Si-
gnatur, einen Autor, ein Datum und eine Begründung.

5

10 GitHub und öffentliche Zugänglichkeit
Später entsteht GitHub, eine Plattform, die Git-Repositories öffentlich zugäng-
lich und kollaborativ nutzbar macht. GitHub wird nicht von Linus entwickelt,
aber Linux nutzt es heute als öffentliches Spiegelrepository. Das bedeutet: Die
offizielle Entwicklung findet weiterhin verteilt statt, aber der komplette aktuelle
Entwicklungsstand inklusive Historie ist für jeden einsehbar.

11 Technische Einordnung
Wichtig ist hier die technische Einordnung: Nicht die allerersten Linux-Versionen
von 1991 sind vollständig in Git entstanden, denn Git existierte damals noch
nicht. Diese frühe Geschichte wurde später rekonstruiert. Ab dem Zeitpunkt
der Git-Einführung jedoch ist die Entwicklung nahezu lückenlos dokumentiert.
Man kann also Commit für Commit nachvollziehen, wann welcher Code hinzuge-
fügt, geändert oder entfernt wurde, inklusive Diskussionen, Patches und Review-
Kommentaren. Damit wird Linux zu etwas Einzigartigem: Ein Betriebssystem,
dessen technisches Wachstum öffentlich einsehbar ist – nicht als Marketingge-
schichte, sondern als reale, überprüfbare Entwicklungslinie.

12 Linux heute: Eine globale Infrastruktur
Heute ist Linux kein einzelnes Projekt mehr, sondern eine globale Infrastruktur.
Es läuft auf Servern, Smartphones, Routern, Fahrzeugen und Supercomputern.
Doch im Kern folgt Linux noch immer demselben Prinzip wie am Anfang: Kon-
trolle, Transparenz und technische Konsequenz.

6

	Einleitung
	Am Anfang: Unix – elegant, aber geschlossen
	MINIX und seine Grenzen
	Linus Torvalds und der Kernel
	Der entscheidende Wendepunkt: GNU GPL
	GNU und das fehlende Userland
	Wachsende Komplexität
	Das Problem der Koordination
	Die Lösung: Git
	GitHub und öffentliche Zugänglichkeit
	Technische Einordnung
	Linux heute: Eine globale Infrastruktur

