Linux: Vom Hobbyprojekt zur globalen
Infrastruktur

Hood Informatik |(YouTube)

31.01.2026

https://www.youtube.com/watch?v=WYGFov75Pvw

Inhaltsverzeichnis

2 Am Anfang: Unix — elegant, aber geschlossen

8 _MINIX und seine Grenzenl
4__Linus Torvalds und der Kernell

[Der entscheidende Wendepunkt: GNU GPIL]

6 GNU und das fehlende Userland|

17 Wachsende Komplexitat|

B Das Problem der K Tmation

[0 Die Losung: Gif

110 GitHub und offentliche Zuganglichkeit|

111 Technische Einordnung|

|12 Linux heute: Eine globale Infrastruktur|

Abbildungsverzeichnis

11 AT'T Unix PC Model 7300 Vintage 1985
[Kernel Layout (Author: Bobbo)|.

w

1 Einleitung

Wenn wir die Entstehungsgeschichte von Linux verstehen wollen, dann reicht es
nicht nur bei der Idee stehen zu bleiben. Wir miissen uns ansehen, wie Linux
technisch gewachsen ist, warum dieses Wachstum tiberhaupt moglich war und
weshalb man heute Jahrzehnte spéter jede einzelne Entscheidung fast liickenlos
zuriickverfolgen kann. Genau das macht Linux einzigartig.

2 Am Anfang: Unix — elegant, aber geschlossen

In einer Welt, in der Betriebssysteme zwar leistungsfihig, aber abgeschottet
sind, dominiert Unix Universitdten und Unternehmen. Unix ist eine Familie
von Mehrbenutzerbetriebssystemen, deren Design auf klaren Schnittstellen und
klein kombinierbaren Programmen basiert. Technisch ist Unix elegant, aber der
Quellcode ist proprietar. Wer lernen will, wie ein Betriebssystem wirklich funk-
tioniert, st6fst schnell an eine Wand. Proprietér ist quasi das Gegenteil von Open
Source bzw. Quelloffen. Man kann den Code also weder lesen noch modifizieren.

THE ATST UNIXPC

COMBINATION OF COMPUTER CAPABILITIES

b alownatoprecwm oy data Notso e wenttox bt oftimeand They ke e AT ke
Se gl RSt e
Claamntinit | eeknient, T 3
TS e P otk s i s
ety =y =

vk cllbe ARTUNIX.

S vyt g i et e AT
aradon e AT NI PCD oot Sytoms Ao e
P e e syt e ke e AT G,
N oo e R

=
=
e
: he right choice.
‘»'x'”""mm‘:;a S

Abbildung 1: ATT Unix PC Model 7300 Vintage 1985

3 MINIX und seine Grenzen

Als Reaktion darauf entsteht Minix, ein bewusst einfach gehaltenes Unix-&dhnliches
System fiir den Unterricht. Minix erlaubt es, Betriebssystem-Konzepte zu stu-
dieren, aber nicht, sie kompromisslos weiterzuentwickeln. Anderungen sind ein-

geschrinkt. Produktiver Einsatz ist nicht vorgesehen. Fiir die meisten Studie-
renden ist das ausreichend — fiir Linus Torvalds nicht.

4 Linus Torvalds und der Kernel

1991 beginnt Linus Torvalds (* 1969), Informatikstudent in Helsinki, einen eige-
nen Kernel zu schreiben. Ein Kernel ist der zentrale Teil eines Betriebssystems,
der direkt auf der Hardware lauft, Prozesse plant, Speicher verwaltet und Sys-
temaufrufe bereitstellt, {iber die Programme mit dem System interagieren. Li-
nus’ Ziel ist nicht, ein vollstédndiges Betriebssystem zu bauen, sondern die volle
Kontrolle iiber genau diesen Kern zu haben. Dementsprechend sind die ersten
Versionen von Linux klein, roh und klar auf eine Architektur zugeschnitten.
Technisch handelt es sich um einen monolithischen Kernel, also einen Kernel,
bei dem zentrale Funktionen wie Speicherverwaltung, Dateisysteme und Treiber
im selben Adressraum laufen. Das erhoht zwar die Komplexitét, ermoglicht aber
hohe Performance und direkte Kommunikation zwischen Subsystemen.

\/ \/ \/
CPU Memory| |Devices

Abbildung 2: Kernel Layout (Author: Bobbo)

5 Der entscheidende Wendepunkt: GNU GPL

Schon friih zeigt sich: Linux ist kein Lehrprojekt, sondern ein System, das be-
nutzt werden will. Der entscheidende Wendepunkt kommt mit der Verdffent-
lichung des Codes unter der GNU GPL. Diese Lizenz erlaubt es jedem, den

Code zu nutzen, zu verindern und weiterzugeben, verlangt aber, dass alle An-
derungen ebenfalls offen bleiben. Technisch bedeutet das: Jede Verbesserung
wird Teil eines gemeinsamen Wissenspeichers. Linux kann wachsen, ohne sich
zu schliefen.

6 GNU und das fehlende Userland

GNU hatte iiber Jahre hinweg Werkzeuge wie Compiler, Shells und Systempro-
gramme entwickelt — also das sogenannte Userland, die Programme, mit denen
Nutzer direkt arbeiten. Was fehlte, war ein stabiler Kernel. Linux schloss die-
se Liicke. Aus zwei unabhéngigen Projekten entsteht also ein funktionierendes
Gesamtsystem, das oft prazise als GNU/Linux bezeichnet wird.

7 Wachsende Komplexitat

Mit steigender Anzahl an Entwicklern wéchst auch die technische Komplexitét.
Der Kernel bekommt klar strukturierte Subsysteme: Ein Scheduler, der ent-
scheidet, welcher Prozess wann Rechenzeit bekommt; eine Speicherverwaltung,
die virtuellen Speicher abstrahiert; ein Netzwerk-Subsystem, das Protokolle wie
TCP/IP implementiert. Jeder dieser Bereiche ist hochspezialisiert, aber iiber
klar definierte Schnittstellen miteinander verbunden.

8 Das Problem der Koordination

Doch genau dieses Wachstum bringt ein neues Problem mit sich: Wie koor-
diniert man tausende Anderungen von Entwicklern auf der ganzen Welt? An-
fangs nutzt die Linux-Community klassische Versionsverwaltungssysteme, doch
sie stofsen an ihre Grenzen. Sie sind zu langsam, nicht verteilt genug und nicht
dafiir gemacht, massive parallele Entwicklung zu bewéltigen.

9 Die Losung: Git

2005 reagiert Linus Torvalds erneut mit demselben Muster wie schon 1991: Er
baut selbst, was er braucht. Er entwickelt Git. Git ist ein verteiltes Versionsver-
waltungssystem, bei dem jeder Entwickler eine vollsténdige Kopie der gesamten
Projektgeschichte besitzt. Technisch basiert Git auf kryptografischen Hashes,
wodurch jede Anderung eindeutig identifizierbar und manipulationssicher wird.
Git verdndert nicht nur die Linux-Entwicklung, sondern die gesamte Software-
Welt. Es erlaubt schnelle Branches, parallele Entwicklung und eine transparente
Historie. Jede einzelne Anderung am Linux-Kernel bekommt eine eindeutige Si-
gnatur, einen Autor, ein Datum und eine Begriindung.

10 GitHub und offentliche Zuganglichkeit

Spater entsteht GitHub, eine Plattform, die Git-Repositories 6ffentlich zugéng-
lich und kollaborativ nutzbar macht. GitHub wird nicht von Linus entwickelt,
aber Linux nutzt es heute als offentliches Spiegelrepository. Das bedeutet: Die
offizielle Entwicklung findet weiterhin verteilt statt, aber der komplette aktuelle
Entwicklungsstand inklusive Historie ist fiir jeden einsehbar.

11 Technische Einordnung

Wichtig ist hier die technische Einordnung: Nicht die allerersten Linux-Versionen
von 1991 sind vollstdndig in Git entstanden, denn Git existierte damals noch
nicht. Diese frithe Geschichte wurde spéater rekonstruiert. Ab dem Zeitpunkt
der Git-Einfiihrung jedoch ist die Entwicklung nahezu liickenlos dokumentiert.
Man kann also Commit fiir Commit nachvollziehen, wann welcher Code hinzuge-
fligt, gedndert oder entfernt wurde, inklusive Diskussionen, Patches und Review-
Kommentaren. Damit wird Linux zu etwas Einzigartigem: Ein Betriebssystem,
dessen technisches Wachstum o6ffentlich einsehbar ist — nicht als Marketingge-
schichte, sondern als reale, tiberpriifbare Entwicklungslinie.

12 Linux heute: Eine globale Infrastruktur

Heute ist Linux kein einzelnes Projekt mehr, sondern eine globale Infrastruktur.
Es lduft auf Servern, Smartphones, Routern, Fahrzeugen und Supercomputern.
Doch im Kern folgt Linux noch immer demselben Prinzip wie am Anfang: Kon-
trolle, Transparenz und technische Konsequenz.

	Einleitung
	Am Anfang: Unix – elegant, aber geschlossen
	MINIX und seine Grenzen
	Linus Torvalds und der Kernel
	Der entscheidende Wendepunkt: GNU GPL
	GNU und das fehlende Userland
	Wachsende Komplexität
	Das Problem der Koordination
	Die Lösung: Git
	GitHub und öffentliche Zugänglichkeit
	Technische Einordnung
	Linux heute: Eine globale Infrastruktur

